Uniform-in-Time Convergence of Numerical Schemes for a Two-Phase Discrete Fracture Model
نویسندگان
چکیده
Flow and transport in fractured porous media are of paramount importance for many applications such as petroleum exploration and production, geological storage of carbon dioxide, hydrogeology, or geothermal energy. We consider here the two-phase discrete fracture model introduced in [3] which represents explicitly the fractures as codimension one surfaces immersed in the surrounding matrix domain. Then, the two-phase Darcy flow in the matrix is coupled with the two-phase Darcy flow in the fractures using transmission conditions accounting for fractures acting either as drains or barriers. The model takes into account complex networks of fractures, discontinuous capillary pressure curves at the matrix fracture interfaces and can be easily extended to account for gravity including in the width of the fractures. It also includes a layer of damaged rock at the matrix fracture interface with its own mobility and capillary pressure functions. In this work, the convergence analysis carried out in [3] in the framework of gradient discretizations [2] is extended to obtain the uniform-in-time convergence of the discrete solutions to a weak solution of the model.
منابع مشابه
A new conforming mesh generator for three-dimensional discrete fracture networks
Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملComparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow
In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کامل